Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Drug Metab Dispos ; 50(7): 909-922, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489778

RESUMO

The multidrug resistance protein 1 (MDR1) P-glycoprotein (P-gp) is a clinically important transporter. In vitro P-gp inhibition assays have been routinely conducted to predict the potential for clinical drug-drug interactions (DDIs) mediated by P-gp. However, high interlaboratory and intersystem variability of P-gp IC50 data limits accurate prediction of DDIs using static models and decision criteria recommended by regulatory agencies. In this study, we calibrated two in vitro P-gp inhibition models: vesicular uptake of N-methyl-quinidine (NMQ) in MDR1 vesicles and bidirectional transport (BDT) of digoxin in Lilly Laboratories Cell Porcine Kidney 1 cells overexpressing MDR1 (LLC-MDR1) using a total of 48 P-gp inhibitor and noninhibitor drugs and digoxin DDI data from 70 clinical studies. Refined thresholds were derived using receiver operating characteristic analysis, and their predictive performance was compared with the decision frameworks proposed by regulatory agencies and selected reference. Furthermore, the impact of various IC50 calculation methods and nonspecific binding of drugs on DDI prediction was evaluated. Our studies suggest that the concentration of inhibitor based on highest approved dose dissolved in 250 ml divided by IC50(I2/IC50) is sufficient to predict P-gp related intestinal DDIs. IC50 obtained from vesicular inhibition assay with a refined threshold of I2/IC50 ≥ 25.9 provides comparable predictive power over those measured by net secretory flux and efflux ratio in LLC-MDR1 cells. We therefore recommend vesicular P-gp inhibition as our preferred method given its simplicity, lower variability, higher assay throughput, and more direct estimation of in vitro kinetic parameters, rather than BDT assay. SIGNIFICANCE STATEMENT: This study has conducted comprehensive calibration of two in vitro P-gp inhibition models: uptake in MDR1 vesicles and bidirectional transport in LLC-MDR1 cell monolayers to predict DDIs. This study suggests that IC50s obtained from vesicular inhibition with a refined threshold of I2/IC50 ≥ 25.9 provide comparable predictive power over those in LLC-MDR1 cells. Therefore, vesicular P-gp inhibition is recommended as the preferred method given its simplicity, lower variability, higher assay throughput, and more direct estimation of in vitro kinetic parameters.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Digoxina , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/fisiologia , Digoxina/metabolismo , Suínos , Transcitose
2.
AAPS J ; 24(3): 45, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314909

RESUMO

Inhibitory effects of asunaprevir, daclatasvir, grazoprevir, paritaprevir, simeprevir, and voxilaprevir, direct-acting antiviral (DAA) drugs for the treatment of chronic hepatitis C virus (HCV) infection, were evaluated in vitro against a range of clinically important drug transporters. In vitro inhibition studies were conducted using transporter transfected cells and membrane vesicles. The risk of clinical drug-drug interactions (DDIs) was assessed using simplified static models recommended by regulatory agencies. Furthermore, we refined and developed static models to predict complex DDIs with several statins (pitavastatin, rosuvastatin, atorvastatin, and pravastatin) by mechanistically assessing differential inhibitory effects of perpetrator drugs on multiple transporters, such as organic anion transporting polypeptides (OATP1B), breast cancer resistance protein (BCRP), multidrug resistance protein 2 (MRP2), organic anion transporter 3 (OAT3), and cytochrome P450 CYP3A enzyme, as they are known to contribute to absorption, distribution, metabolism and excretion (ADME) of above statins. These models successfully predicted a total of 46 statin DDIs, including above DAA drugs and their fix-dose combination regimens. Predicted plasma area under curve ratio (AUCR) with and without perpetrator drugs was within ~ 2-fold of observed values. In contrast, simplified static R-value model resulted in increased false negative and false positive predictions when different prediction cut-off values were applied. Our studies suggest that mechanistic static model is a promising and useful tool to provide more accurate prediction of the risk and magnitude of DDIs with statins in early drug development and may help to improve the management of clinical DDIs for HCV drugs to ensure effective and safe HCV therapy. GRAPHICAL ABSTRACT.


Assuntos
Hepatite C Crônica , Inibidores de Hidroximetilglutaril-CoA Redutases , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antivirais , Interações Medicamentosas , Hepacivirus/metabolismo , Hepatite C Crônica/tratamento farmacológico , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Neoplasias/metabolismo
3.
J Antimicrob Chemother ; 74(7): 1894-1903, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30891606

RESUMO

OBJECTIVES: To identify the transporters involved in renal elimination of relebactam, and to assess the potential of relebactam as a perpetrator or victim of drug-drug interactions (DDIs) for major drug transporters. METHODS: A series of bidirectional transport, uptake and inhibition studies were conducted in vitro using transfected cell lines and membrane vesicles. The inhibitory effects of relebactam on major drug transporters, as well as the inhibitory effects of commonly used antibiotics/antifungals on organic anion transporter (OAT) 3-mediated uptake of relebactam, were assessed. RESULTS: Relebactam was shown to be a substrate of OAT3, OAT4, and multidrug and toxin extrusion (MATE) proteins MATE1 and MATE2K. Relebactam did not show profound inhibition across a panel of transporters, including organic anion-transporting polypeptides 1B1 and 1B3, OAT1, OAT3, organic cation transporter 2, MATE1, MATE2K, breast cancer resistance protein, multidrug resistance protein 1 and the bile salt export pump. Among the antibiotics/antifungals assessed for potential DDIs, probenecid demonstrated the most potent in vitro inhibition of relebactam uptake; however, such in vitro data did not translate into clinically relevant DDIs, suggesting that relebactam can be co-administered with OAT inhibitors, such as probenecid. CONCLUSIONS: Overall, relebactam has low potential to be a victim or perpetrator of DDIs with major drug transporters.


Assuntos
Compostos Azabicíclicos/farmacocinética , Transporte Biológico , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Inibidores de beta-Lactamases/farmacocinética , Animais , Linhagem Celular , Vesículas Extracelulares , Humanos , Modelos Biológicos
4.
Mol Pharmacol ; 89(5): 492-504, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26893303

RESUMO

Breast cancer resistance protein (BCRP) is expressed in various tissues, such as the gut, liver, kidney and blood brain barrier (BBB), where it mediates the unidirectional transport of substrates to the apical/luminal side of polarized cells. Thereby BCRP acts as an efflux pump, mediating the elimination or restricting the entry of endogenous compounds or xenobiotics into tissues and it plays important roles in drug disposition, efficacy and safety. Bcrp knockout mice (Bcrp(-/-)) have been used widely to study the role of this transporter in limiting intestinal absorption and brain penetration of substrate compounds. Here we describe the first generation and characterization of a mouse line humanized for BCRP (hBCRP), in which the mouse coding sequence from the start to stop codon was replaced with the corresponding human genomic region, such that the human transporter is expressed under control of the murineBcrppromoter. We demonstrate robust human and loss of mouse BCRP/Bcrp mRNA and protein expression in the hBCRP mice and the absence of major compensatory changes in the expression of other genes involved in drug metabolism and disposition. Pharmacokinetic and brain distribution studies with several BCRP probe substrates confirmed the functional activity of the human transporter in these mice. Furthermore, we provide practical examples for the use of hBCRP mice to study drug-drug interactions (DDIs). The hBCRP mouse is a promising model to study the in vivo role of human BCRP in limiting absorption and BBB penetration of substrate compounds and to investigate clinically relevant DDIs involving BCRP.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Xenobióticos/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Disponibilidade Biológica , Biotransformação/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Interações Medicamentosas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Humanos , Absorção Intestinal/efeitos dos fármacos , Masculino , Moduladores de Transporte de Membrana/sangue , Moduladores de Transporte de Membrana/metabolismo , Moduladores de Transporte de Membrana/farmacocinética , Moduladores de Transporte de Membrana/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Xenobióticos/sangue , Xenobióticos/metabolismo , Xenobióticos/farmacologia
5.
Drug Metab Dispos ; 42(8): 1301-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24855184

RESUMO

Organic anion transporting polypeptide (Oatp) 1a/1b knockout and OATP1B1 and -1B3 humanized mouse models are promising tools for studying the roles of these transporters in drug disposition. Detailed characterization of these models will help to better understand their utility for predicting clinical outcomes. To advance this approach, we carried out a comprehensive analysis of these mouse lines by evaluating the compensatory changes in mRNA expression, quantifying the amounts of OATP1B1 and -1B3 protein by liquid chromatography-tandem mass spectrometry, and studying the active uptake in isolated hepatocytes and the pharmacokinetics of some prototypical substrates including statins. Major outcomes from these studies were 1) mostly moderate compensatory changes in only a few genes involved in drug metabolism and disposition, 2) a robust hepatic expression of OATP1B1 and -1B3 proteins in the respective humanized mouse models, and 3) functional activities of the human transporters in hepatocytes isolated from the humanized models with several substrates tested in vitro and with pravastatin in vivo. However, the expression of OATP1B1 and -1B3 in the humanized models did not significantly alter liver or plasma concentrations of rosuvastatin and pitavastatin compared with Oatp1a/1b knockout controls under the conditions used in our studies. Hence, although the humanized OATP1B1 and -1B3 mice showed in vitro and/or in vivo functional activity with some statins, further characterization of these models is required to define their potential use and limitations in the prediction of drug disposition and drug-drug interactions in humans.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Interações Medicamentosas/fisiologia , Fluorbenzenos/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/enzimologia , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Masculino , Camundongos , Pravastatina/metabolismo , Pirimidinas/metabolismo , RNA Mensageiro/genética , Rosuvastatina Cálcica , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Sulfonamidas/metabolismo
6.
Drug Metab Dispos ; 41(7): 1347-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620485

RESUMO

A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells--Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Digoxina/farmacocinética , Medição de Risco , Animais , Transporte Biológico , Células CACO-2 , Cães , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Células LLC-PK1 , Análise de Componente Principal , Suínos
7.
Chem Res Toxicol ; 25(7): 1412-22, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22765480

RESUMO

1-{4-[(4-Phenyl-5-trifluoromethyl-2-thienyl)methoxy]benzyl}azetidine-3-carboxylic acid (MRL-A) is a potent sphingosine-1-phosphate-1 receptor agonist, with potential application as an immunosuppressant in organ transplantation or for the treatment of autoimmune diseases. When administered orally to rats, radiolabeled MRL-A was found to undergo metabolism to several reactive intermediates, and in this study, we have investigated its potential for protein modification in vivo and in vitro. MRL-A irreversibly modified liver and kidney proteins in vivo, in a dose- and time-dependent manner. The binding was found to occur selectively to microsomal and mitochondrial subcellular fractions. Following a nonspecific proteolytic digestion of liver and kidney proteins, a single major amino acid adduct was observed. This adduct was characterized with LC/MS/UV and NMR spectroscopy and was found to be the product of an unprecedented metabolic activation of the azetidine moiety leading to the formation of a ring-opened α,ß-unsaturated imine conjugated to the ε-amino group of a lysine residue. The formation of this adduct was not inhibited when rats were pretreated with 1-aminobenzotriazole, indicating that P450 enzymes were not involved in the metabolic activation of MRL-A. Rather, our findings suggested that MRL-A underwent bioactivation via a ß-oxidation pathway. Several other minor adducts were identified from protein hydrolysates and included lysine, serine, and cysteine conjugates of MRL-A. These minor adducts were also detected in microsomal incubations fortified with the cofactors for acyl-CoA synthesis and in hepatocytes. Trypsin digestion of crude liver homogenates from rats treated with radiolabeled MRL-A led to the identification of a single radioactive peptide. Its sequence, determined by LC/MS analysis, revealed that the target of the major reactive species of MRL-A in vivo is Lys676 of long chain acyl-CoA synthetase-1 (ACSL1). This lysine residue has been found to be critical for ACSL1 activity, and its modification has the potential to lead to biological consequences such as cardiac hypertrophy or thermogenesis dysregulation.


Assuntos
Azetidinas/metabolismo , Proteínas/metabolismo , Receptores de Lisoesfingolipídeo/agonistas , Tiofenos/metabolismo , Administração Oral , Animais , Azetidinas/toxicidade , Biotransformação , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Marcação por Isótopo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Peptídeos/análise , Proteínas/química , Ratos , Receptores de Lisoesfingolipídeo/metabolismo , Tiofenos/toxicidade
8.
J Pharmacol Toxicol Methods ; 65(2): 64-74, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22394995

RESUMO

INTRODUCTION: P-Glycoprotein (ABCB1, MDR1) is a multidrug efflux pump that is a member of the ATP-binding cassette (ABC) superfamily. Many drugs in common clinical use are either substrates or inhibitors of this transporter. Quantitative details of P-glycoprotein inhibition by pharmaceutical agents are essential for assessment of their pharmacokinetic behavior and prevention of negative patient reactions. Cell-based systems have been widely used for determination of drug interactions with P-glycoprotein, but they suffer from several disadvantages, and results are often widely variable between laboratories. We aimed to demonstrate that a novel liposomal system employing contemporary biochemical methodologies could measure the ability of clinically used drugs to inhibit the P-glycoprotein pump. To accomplish this we compared results with those of cell-based approaches. METHODS: Purified transport-competent hamster Abcb1a P-glycoprotein was reconstituted into a unilamellar liposomal system, Fluorosome-trans-pgp, whose aqueous interior contains fluorescent drug sensors. This provides a well-defined system for measuring P-glycoprotein transport inhibition by test drugs in real time using rapid fluorescence-based technology. RESULTS: Inhibition of ATP-driven transport by Fluorosome-trans-pgp employed a panel of 46 representative drugs. Resulting IC50 values correlated well (r2=0.80) with Kd values for drug binding to purified P-glycoprotein. They also showed a similar trend to transport inhibition data obtained using LLC-MDR1 cell monolayers. Fluorosome-trans-pgp IC50 values were in agreement with published results of digoxin drug-drug interaction studies in humans. DISCUSSION: This novel approach using a liposomal system and fluorescence-based technology is shown to be suitable to study whether marketed drugs and drug candidates are P-glycoprotein inhibitors. The assay is rapid, allowing a 7-point IC50 determination in <6 min, and requires minimal quantities of test drug. The method is amenable to robotics and offers a cost advantage relative to conventional cell-based assays. The well-defined nature of this assay also obviates many of the inherent complications and ambiguities of cell-based systems.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Lipossomos/metabolismo , Preparações Farmacêuticas/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Animais , Transporte Biológico Ativo , Cricetinae , Ciclosporina/química , Ciclosporina/metabolismo , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Células LLC-PK1 , Lipossomos/química , Preparações Farmacêuticas/química , Ligação Proteica , Proteínas Recombinantes , Suínos
9.
Mol Pharmacol ; 81(2): 220-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22049154

RESUMO

The development of zinc finger nuclease (ZFN) technology has enabled the genetic engineering of the rat genome. The ability to manipulate the rat genome has great promise to augment the utility of rats for biological and pharmacological studies. A Wistar Hannover rat model lacking the multidrug resistance protein Mdr1a P-glycoprotein (P-gp) was generated using a rat Mdr1a-specific ZFN. Mdr1a was completely absent in tissues, including brain and small intestine, of the knockout rat. Pharmacokinetic studies with the Mdr1a P-gp substrates loperamide, indinavir, and talinolol indicated that Mdr1a was functionally inactive in the blood-brain barrier and intestine in Mdr1a(-/-) rats. To identify possible compensatory mechanisms in Mdr1a(-/-) rats, the expression levels of drug-metabolizing enzyme and transporter-related genes were compared in brain, liver, kidney, and intestine of male and female Mdr1a(-/-) and control rats. In general, alterations in gene expression of these genes in Mdr1a(-/-) rats seemed to be modest, with more changes in female than in male rats. Taken together, our studies demonstrate that the ZFN-generated Mdr1a(-/-) rat will be a valuable tool for central nervous system drug target validation and determining the role of P-gp in drug absorption and disposition.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Engenharia Genética/métodos , Dedos de Zinco/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Animais , Endonucleases , Feminino , Expressão Gênica , Genoma , Masculino , Ratos , Ratos Transgênicos , Ratos Wistar , Distribuição Tecidual
10.
Nucleic Acids Res ; 37(4): 1160-73, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19129222

RESUMO

Chromatin immunoprecipitation (ChIP) studies were conducted in human hepatocytes treated with rifampicin in order to identify new pregnane-X receptor (PXR) target genes. Genes, both previously known to be involved and not known to be involved in drug disposition, with PXR response elements (PXREs) located upstream, within or downstream from their potentially associated genes, were identified. Validation experiments identified several new drug disposition genes with PXR binding sites. Of these, only CYP4F12 demonstrated increased binding in the presence of rifampicin. The role of PXR in the basal and inductive response of CYP4F12 was confirmed in hepatocytes in which PXR was silenced. We also assessed the association of PXR-coactivators and -corepressors with known and newly identified PXREs. Both PXR and the steroid receptor coactivator (SRC-1) were found to bind to PXREs in the absence of rifampicin, although binding was stronger after rifampicin treatment. We observed promoter-dependent patterns with respect to the binding of various coactivators and corepressors involved in the regulation of CYP4F12, CYP3A4, CYP2B6, UGT1A1 and P-glycoprotein. In conclusion, our findings indicate that PXR is involved in the regulation of CYP4F12 and that PXR along with SRC1 binds to a broad range of promoters but that many of these are not inducible by rifampicin.


Assuntos
Hepatócitos/metabolismo , Regiões Promotoras Genéticas , Receptores de Esteroides/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Adulto , Sítios de Ligação , Imunoprecipitação da Cromatina , Feminino , Hepatócitos/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Receptor de Pregnano X , Interferência de RNA , Receptores de Esteroides/antagonistas & inibidores , Receptores de Esteroides/genética , Elementos de Resposta , Rifampina/farmacologia , Ativação Transcricional
11.
J Pharmacol Exp Ther ; 321(2): 673-83, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17314201

RESUMO

Sitagliptin, a selective dipeptidyl peptidase 4 inhibitor recently approved for the treatment of type 2 diabetes, is excreted into the urine via active tubular secretion and glomerular filtration in humans. In this report, we demonstrate that sitagliptin is transported by human organic anion transporter hOAT3 (Km=162 microM), organic anion transporting polypeptide OATP4C1, and multidrug resistance (MDR) P-glycoprotein (Pgp), but not by human organic cation transporter 2 hOCT2, hOAT1, oligopeptide transporter hPEPT1, OATP2B1, and the multidrug resistance proteins MRP2 and MRP4. Our studies suggested that hOAT3, OATP4C1, and MDR1 Pgp might play a role in transporting sitagliptin into and out of renal proximal tubule cells, respectively. Sitagliptin did not inhibit hOAT1-mediated cidofovir uptake, but it showed weak inhibition of hOAT3-mediated cimetidine uptake (IC50=160 microM). hOAT3-mediated sitagliptin uptake was inhibited by probenecid, ibuprofen, furosemide, fenofibric acid, quinapril, indapamide, and cimetidine with IC50 values of 5.6, 3.7, 1.7, 2.2, 6.2, 11, and 79 microM, respectively. Sitagliptin did not inhibit Pgp-mediated transport of digoxin, verapamil, ritonavir, quinidine, and vinblastine. Cyclosporine A significantly inhibited Pgp-mediated transport of sitagliptin (IC50=1 microM). Our data indicate that sitagliptin is unlikely to be a perpetrator of drug-drug interactions with Pgp, hOAT1, or hOAT3 substrates at clinically relevant concentrations. Renal secretion of sitagliptin could be inhibited if coadministered with OAT3 inhibitors such as probenecid. However, the magnitude of interactions should be low, and the effects may not be clinically meaningful, due to the high safety margin of sitagliptin.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Inibidores de Adenosina Desaminase , Inibidores da Dipeptidil Peptidase IV , Inibidores Enzimáticos/metabolismo , Glicoproteínas/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Transportadores de Ânions Orgânicos/fisiologia , Pirazinas/metabolismo , Triazóis/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Dipeptidil Peptidase 4 , Humanos , Masculino , Proteínas de Membrana Transportadoras/fisiologia , Camundongos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Fosfato de Sitagliptina
12.
Pharmacogenet Genomics ; 16(8): 579-99, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16847427

RESUMO

Detecting and understanding the potential for off-target pharmacological effects is critical in the optimization of lead compounds in drug discovery programs. Compound-mediated activation of the pregnane X receptor (PXR; NR1I2), a key regulator for drug metabolism genes, is often monitored to avoid potential drug-drug interactions. Two structural analogs, MRL-1 and MRL-2, were determined to be equivalent PXR activators in trans-activation assays. To differentiate these two PXR activators, their transcriptional effects were examined in PXR-sufficient (LS180) and PXR-deficient (Caco-2) adenocarcinoma cell lines. Both compounds regulated drug-management genes (e.g. CYP3A4, CYP2B6, UGT1A1 and ABCB1) in LS180 cells, but not in PXR-deficient Caco-2 cells. The potency of MRL-1 and MRL-2 on PXR activation was again equivalent as revealed by a set of 113 genes that were regulated by four prototypical PXR agonists (rifampicin, ritonavir, troglitazone and dexamethasone) in the LS180 cells. The specificity of the PXR signature genes was supported by the enrichment of putative PXR binding sites uncovered by sequence-based promoter analyses. Interestingly, an additional off-target activity of MRL-2 was suggested where sterol response element binding protein binding sites were found enriched in a subset of PXR signature genes. These genes, involved in cholesterol and fatty acid synthesis, were significantly regulated by ritonavir, chlorpromazine and MRL-2, which were linked to the manifestation of phospholipidosis. The present study demonstrates the utility of our approach in the differentiation and selection of lead compounds for drug development.


Assuntos
Técnicas de Química Combinatória/métodos , Perfilação da Expressão Gênica/métodos , Regiões Promotoras Genéticas , Receptores de Esteroides/metabolismo , Benzopiranos/farmacologia , Células CACO-2 , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Regulação da Expressão Gênica , Humanos , Inativação Metabólica/genética , Intestinos/efeitos dos fármacos , Modelos Biológicos , Receptor de Pregnano X , Rifampina/farmacologia , Especificidade por Substrato/genética , Ativação Transcricional/efeitos dos fármacos
13.
J Pharmacol Exp Ther ; 317(2): 579-89, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16421286

RESUMO

The multidrug resistance protein Mrp2 is an ATP-binding cassette (ABC) transporter mainly expressed in liver, kidney, and intestine. One of the physiological roles of Mrp2 is to transport bilirubin glucuronides from the liver into the bile. Current in vivo models to study Mrp2 are the transporter-deficient and Eisai hyperbilirubinemic rat strains. Previous reports showed hyperbilirubinemia and induction of Mrp3 in the hepatocyte sinusoidal membrane in the mutant rats. In addition, differences in liver cytochrome P450 and UGT1a levels between wild-type and mutant rats were detected. To study whether these compensatory mechanisms were specific to rats, we characterized Mrp2(-/-) mice. Functional absence of Mrp2 in the knockout mice was demonstrated by showing increased levels of bilirubin and bilirubin glucuronides in serum and urine, a reduction in biliary excretion of bilirubin glucuronides and total glutathione, and a reduction in the biliary excretion of the Mrp2 substrate dibromosulfophthalein. To identify possible compensatory mechanisms in Mrp2(-/-) mice, the expression levels of 98 phase I, phase II, and transporter genes were compared in liver, kidney, and intestine of male and female Mrp2(-/-) and control mice. Unlike in Mrp2 mutant rats, no induction of Mrp3 in Mrp2(-/-) mice was detected. However, Mrp4 mRNA and protein in liver and kidney were increased approximately 6- and 2-fold, respectively. Phenotypic analysis of major cytochrome P450-mediated activities in liver microsomes did not show differences between wild-type and Mrp2(-/-) mice. In conclusion, Mrp2(-/-) mice are a new valuable tool to study the role of Mrp2 in drug disposition.


Assuntos
Bilirrubina/análogos & derivados , Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Animais , Bile/metabolismo , Bilirrubina/sangue , Bilirrubina/urina , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Glutationa/metabolismo , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Knockout , Proteína 2 Associada à Farmacorresistência Múltipla , Sulfobromoftaleína/farmacocinética
14.
Eur J Neurosci ; 19(2): 280-6, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14725622

RESUMO

The contribution of arachidonic acid (AA) release and metabolism to the toxicity that results from glutathione (GSH) depletion was studied in rat mesencephalic cultures treated with the GSH synthesis inhibitor l-buthionine sulfoximine. Our data show that GSH depletion is accompanied by increased release of AA, which is phosholipase A2 (PLA2) dependent. Exogenous AA is toxic to GSH-depleted cells. This toxicity is prevented by inhibition of lipoxygenase activity, suggesting participation of toxic byproducts of AA metabolism. Hydroxyperoxyeicosatetraenoic acid (HPETE), one of the primary products of AA metabolism by lipoxygenase is also toxic to GSH-depleted cells, whereas hydroeicosatetraenoic acid (HETE) is not. Cell death caused by GSH depletion is prevented by: (i) replenishment of GSH levels with GSH-ethyl ester; (ii) inhibition of PLA2 activity; (iii) inhibition of lipoxygenase activity; and (iv), treatment with ascorbic acid. These data suggest that the following events likely contribute to cell death when GSH levels become depleted. Loss of GSH results in increased release of AA, which is PLA2 dependent. Metabolism of arachidonic acid via the lipoxygenase pathway results in generation of oxygen free radicals possibly produced during conversion of HPETE to HETE, which contribute to cellular damage and death. Our study suggests that limiting AA release and metabolism may provide benefit in conditions with an existing depletion of GSH, such as Parkinson's disease.


Assuntos
Ácido Araquidônico/fisiologia , Glutationa/metabolismo , Glutationa/toxicidade , Lipoxigenase/metabolismo , Mesencéfalo/metabolismo , Animais , Ácido Araquidônico/metabolismo , Butionina Sulfoximina/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley
15.
Parkinsonism Relat Disord ; 8(6): 385-7, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12217624

RESUMO

Oxidative stress is believed to contribute to the pathogenesis of Parkinson's disease. One of the indices of oxidative stress is the depletion of the antioxidant glutathione (GSH), which may occur early in the development of Parkinson's disease. To study the role of GSH depletion in the survival of dopamine neurons we treated mesencephalic cultures with the GSH synthesis inhibitor L-buthionine sulfoximine. Our studies have shown that the depletion of GSH causes a cascade of events, which ultimately may result in cell death. An early event following GSH depletion is a phospholipase A(2)-dependent release of arachidonic acid. Arachidonic acid can cause damage to the GSH-depleted cells through its metabolism by lipoxygenase. The generation of superoxide radicals during the metabolism of arachidonic acid is likely to play an important role in the toxic events that follow GSH depletion.


Assuntos
Glutationa/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Animais , Humanos
16.
J Neurochem ; 81(2): 301-6, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12064477

RESUMO

Mutations in alpha-synuclein, parkin and ubiquitin C-terminal hydrolase L1, and defects in 26/20S proteasomes, cause or are associated with the development of familial and sporadic Parkinson's disease (PD). This suggests that failure of the ubiquitin-proteasome system (UPS) to degrade abnormal proteins may underlie nigral degeneration and Lewy body formation that occur in PD. To explore this concept, we studied the effects of lactacystin-mediated inhibition of 26/20S proteasomal function and ubiquitin aldehyde (UbA)-induced impairment of ubiquitin C-terminal hydrolase (UCH) activity in fetal rat ventral mesencephalic cultures. We demonstrate that both lactacystin and UbA caused concentration-dependent and preferential degeneration of dopaminergic neurons. Inhibition of 26/20S proteasomal function was accompanied by the accumulation of alpha-synuclein and ubiquitin, and the formation of inclusions that were immunoreactive for these proteins, in the cytoplasm of VM neurons. Inhibition of UCH was associated with a loss of ubiquitin immunoreactivity in the cytoplasm of VM neurons, but there was a marked and localized increase in alpha-synuclein staining which may represent the formation of inclusions bodies in VM neurons. These findings provide direct evidence that impaired protein clearance can induce dopaminergic cell death and the formation of proteinaceous inclusion bodies in VM neurons. This study supports the concept that defects in the UPS may underlie nigral pathology in familial and sporadic forms of PD.


Assuntos
Acetilcisteína/análogos & derivados , Cisteína Endopeptidases/metabolismo , Dopamina/metabolismo , Complexos Multienzimáticos/metabolismo , Neurônios/metabolismo , Ubiquitina/metabolismo , Acetilcisteína/toxicidade , Aldeídos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dopamina/farmacocinética , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/toxicidade , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/ultraestrutura , Mesencéfalo/citologia , Mesencéfalo/embriologia , Complexos Multienzimáticos/antagonistas & inibidores , Neurônios/citologia , Neurônios/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...